Double Hopf bifurcation in delay differential equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability and Hopf Bifurcation in Differential Equations with One Delay

A class of parameter dependent differential equations with one delay is considered. A decomposition of the parameter space into domains where the corresponding characteristic equation has a constant number of zeros with positive real part is provided. The local stability analysis of the zero solution and the computation of all Hopf bifurcation points with respect to the delay is given.

متن کامل

Hopf bifurcation formula for first order differential-delay equations

This work presents an explicit formula for determining the radius of a limit cycle which is born in a Hopf bifurcation in a class of first order constant coefficient differential-delay equations. The derivation is accomplished using Lindstedt s perturbation method. 2005 Elsevier B.V. All rights reserved. PACS: 02.30.Ks; 02.30.Oz

متن کامل

Oscillator death in coupled functional differential equations near Hopf bifurcation

The stability of the equilibrium solution is analyzed for coupled systems of retarded functional differential equations near a supercritical Hopf bifurcation. Necessary and sufficient conditions are derived for asymptotic stability under general coupling conditions. It is shown that the largest eigenvalue of the graph Laplacian completely characterizes the effect of the connection topology on t...

متن کامل

Equivariant Hopf bifurcation for functional differential equations of mixed type

In this paper we employ the Lyapunov–Schmidt procedure to set up equivariant Hopf bifurcation theory of functional differential equations of mixed type. In the process we derive criteria for the existence and direction of branches of bifurcating periodic solutions in terms of the original system, avoiding the process of center manifold reduction. © 2010 Elsevier Ltd. All rights reserved.

متن کامل

Bifurcation from a Heteroclinic Solution in Differential Delay Equations

We study a class of functional differential equations x(t) = af(x(t 1)) with periodic nonlinearity /: R -> R, 0 < / in ( A, 0) and / < 0 in (0, B ), /( A ) = /(0) = /( B) = 0. Such equations describe a state variable on a circle with one attractive rest point (given by the argument £ = 0 of/) and with reaction lag a to deviations. We prove that for a certain critical value a = a0 there exists a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arab Journal of Mathematical Sciences

سال: 2014

ISSN: 1319-5166

DOI: 10.1016/j.ajmsc.2013.10.002